— Exercises —

- 1. Textbook 9.3 (c) p.434
- 2. Local vs. global diffeomorphism III. Show that f is a local diffeomorphism, i.e., $\forall p$ in the domain, $\exists B$ a neighborhood of p such that $f_{|B}$ is a differentiable bijection onto its image, whose inverse is also differentiable. Discuss the injectivity and the surjectivity of f.

$$\begin{split} f: & \mathbb{R}^3 \quad \rightarrow \mathbb{R}^3 \\ & (x,y,z) \mapsto (e^{2y} + e^{2z}, e^{2x} - e^{2z}, x - y). \end{split}$$

— Problems —

3. Application of the implicit function theorem. Let

$$F: \mathbb{R}^2 \to \mathbb{R}$$
$$(x,y) \mapsto y^n + a_{n-1}(x)y^{n-1} + \dots + a_1(x)y + a_0(x)$$

where $\forall j, a_j \in \mathcal{C}^1(\mathbb{R})$. Assume that $\exists x_0, y_0 \in \mathbb{R}$ s.t. the polynomial function

$$P_{x_0}: y \mapsto F(x_0, y)$$

has a simple root at y_0 .

Show that there exist V and W, open neighborhoods of x_0 and y_0 respectively, such that $\forall x \in V, \exists ! y_x \in W$ s.t. y_x is a simple zero of P_x , and

$$V \longrightarrow W$$
$$x \longmapsto y_x$$

is \mathcal{C}^1 .

- 4. Application of the inverse function theorem. Denote D be the centered open unit disk in \mathbb{R}^2 , \overline{D} its closure, and ∂D its boundary. Let $f : \overline{D} \to \mathbb{R}^2$ be a continuous function such that: $f_{|\partial D} = Id_{|\partial D}$; $f_{|D} \in C^1$; $\forall x \in D$, $J_f(x) \neq 0$.
 - (a) Show that if U is open in D, then f(U) is open.
 - (b) Show that the image of f is \overline{D} .
 - (c) Show that $\forall y \in \overline{D}$, $f^{-1}(y)$ is finite.